
User’s Name: John W Gintell

Document Title: scrutiny esec - RR

LaserWriter: Software Technology-2n1

Application: Microsoft Word

Date Spooled: Wednesday, January 12, 1994

Time Spooled: 9:25:28 AM

To appear in Proceedings of Fourth European Software Engineering Conference
Garmisch-Partenkirchen, Germany (Sept. 13-17, 1993)

April 20, 1993 Page 1 RAD/USARL/93010

Scrutiny: A Collaborative Inspection and Review System

John Gintell, John Arnold, Michael Houde, Jacek Kruszelnicki,
Roland McKenney, and Gérard Memmi

US Applied Research Laboratory
Bull HN Information Systems Inc.

300 Concord Road - MS 821A
Billerica, MA 01821 USA

(email: j.gintell@bull.com)

Abstract. This paper describes a Bull US Applied Research Laboratory
project to build a collaborative inspection and review system called Scrutiny
using ConversationBuilder from the University of Illinois at Urbana-
Champaign. The project has several distinct aspects: technology oriented
research, prototype building, experimentation, and tool deployment/
technology transfer. Described are the design of the current operational
version of Scrutiny for inspection-only, the evolutionary design of Scrutiny
to handle various forms of review, and some initial thoughts on integration
with other CASE frameworks and tools. The problem domain selected, the
development environment, lessons learned thus far, some ideas from related
work, and the problems anticipated are discussed here.

1 Introduction

Scrutiny is a collaborative system for inspection and review of software
engineering work products. It is a distributed system that can be used by
geographically separated users. Scrutiny uses general purpose mechanisms for
integration with tools and CASE frameworks. It is tailorable for different software
engineering process models. Scrutiny is intended for widespread use within our
company to obtain usage experience with real users. As a starting point we
implemented a working prototype restricted to inspection called CIA
(Collaborative Inspection Agent) and obtained promising results from initial use.
These results confirmed that our problem selection, technology choice, and initial
design are sound. The results are guiding us in our next steps.

There have been a number of other efforts for computer assisted inspection and
review described recently (see Section 7). Each describes a dimension of
inspection that extends beyond the traditional view of what inspection is.
Scrutiny differs from the work in these systems because it combines 1) a
distributed collaborative environment, 2) integration with other tools using
general purpose and standardized mechanisms, and 3) support for multiple
process models.

This is a work-in-progress paper. Scrutiny has been underway for more than one
year now1. We have a working prototype, some experimental users, favorable
initial reaction from management as well as users and have obtained a first set of
results. We continue to investigate, build prototypes and get practical experience

1 At the time of publication of this paper the project will have been underway for two
years.

April 20, 1993 Page 2 RAD/USARL/93010

with some of the prototypes by making them robust and putting them into
extensive practice. As a large company that is distributed in a number of
locations worldwide, we have an ideal environment to test out some of these
ideas in non-research oriented software engineering environments.

The remainder of this section describes the motivation for this project. Section 2
describes the CSCW technology selected as the basis on which to implement
Scrutiny. Section 3 describes its design and implementation. Section 4 describes
the current status and lessons learned. Sections 5 and 6 describe future work for
Scrutiny. Section 7 describes related work in this problem domain. Section 8
contains our conclusions.

1.1 A Perspective on this Project

Inspection was chosen because it is a widely accepted practice within Bull [22]
and it is well-defined. We wanted to build a tool that would be used by a variety
of users who could give us usage-based feedback to guide future development.
Selecting a widely accepted practice was a necessary condition for obtaining
acceptance for the tool. Being a well-defined process gave us an excellent model
to emulate as a starting point. Scrutiny was constrained to fit the Bull model so
that using it would count as an “official” inspection.

Face-to-face inspection of all work products (e.g. documents, code, and tests) has
proven to be an effective means for achieving higher product quality. Inspection
is a well-defined process first developed by Fagan at IBM [6]. Inspection is
usually performed without computerized assistance. It is generally done with a
team of people who first prepare independently, and then meet in a room to
perform a group inspection with individuals assigned to specific roles. It is a
collaborative process because it takes teamwork to properly identify and classify
the defects. After the inspection has been completed, defects identified during the
meeting and other relevant information including metrics about the inspection
itself are manually entered in various databases for later processing.

Uniformity of the inspection process is required so that results can be collected
and rolled up for later analysis and process improvement. The motivation for
this has been stimulated by the need to obtain ISO 9001 [9] certification and by
the Software Engineering Institute sponsored Capability Maturity Model [8] [17].

There is a general desire to automate the inspection and review process, to allow
it to be performed by geographically spread teams, and to integrate it with other
environments (e.g. configuration management or bug tracking systems). Further,
there is a continuum of process sub-models ranging from inspection to review-
with-construction. This variety of forms of use led us to produce a tool that is
configurable in many modes. We envision a number of advantages to be reaped
with a distributed tool used for inspection and review and that is integrated with
other tools and environments.

Computer-Supported Cooperative Work (CSCW) is currently a very active field.
Many CSCW projects implement some form of shared writing and/or review.
Scrutiny augments collaboration technology with controls at those points of
people/application interaction governed by the rules of the inspection process.

2 Technology Selected - ConversationBuilder

We require a distributed system environment suitable for rapid application
development. It must support collaborative work with simultaneous display of
information on multiple users’ screens under both application and individual

April 20, 1993 Page 3 RAD/USARL/93010

user control. It must support user-role definitions so that the tools generated can
comply with process rules and practices. It must be open and extremely flexible
with respect to integration with other tools. It must be operational and
supported. It should also be under active development so it can keep pace with
new technologies and can evolve as requirements are generated by our
applications and experiences.

ConversationBuilder (CB) [12] from University of Illinois at Urbana-Champaign
was selected because of its architecture and the kind of problems it was designed
to solve. CB supports a structured conversation model and was influenced by the
Language - Action model by Winograd/Flores [23]; thus it is well suited to
handling the discourse that occurs during inspection and review. CB’s
architecture is suitable for a wide variety of applications, for the linkage between
them and for integration with other externally defined tools and environments. It
satisfies all our requirements. It is under active development at the University of
Illinois; Bull has become one of the sponsors of the work there.

User Interface Clients - N

Graph
Browser

Widget
Server

File
Clerk

Text
Server

...

 Message Bus

File
Clerk

Conversation Engine

ScrutinyIBIS ...

User Interface Clients - 1

ConversationBuilder
Server

Graph
Browser

Widget
Server

File
Clerk

Text
Server

Fig. 1. ConversationBuilder Architecture

ConversationBuilder is a distributed system depicted in Figure 1; its major
components are:

• the Message Bus - a multi-user control integration mechanism used to
interconnect tool components; it acts as the vehicle for multi-cast message
passing between all of the other components that comprise CB and its
applications. The Message Bus is a FIELD-inspired form of integration [18].

• a User Interface Suite for each user that includes a Motif-based Widget
Server to manage the user interface, a Graph Browser, a Text Server, and a
File Clerk to manipulate files and their contents.

April 20, 1993 Page 4 RAD/USARL/93010

• the Conversation Engine itself whose job is to support collaboration and to
manage the actual application activities. The applications are called
protocols. A protocol is a CLOS (Common Lisp Object System) description
of a conversation flow that is enacted by the engine.

CB is written in CLOS and C and runs on UNIX™; the applications themselves
are also written in CLOS enabling them to inherit the classes defined in CB and
thus build upon its mechanisms. In addition to Scrutiny, there are CB protocols
either in experimental or operational form for a wide variety of collaborative
processes: IBIS2 [3], Design Rationale, Shared Whiteboard, Shared Editor,
WorkFlow, Configuration Management, and Bug Tracking.

3 Description of Scrutiny

3.1 Inspection Roles as implemented by Scrutiny

Based on the Fagan model, the inspection roles are as follows:
• a Moderator to control the inspection activities from beginning to end. He or

she chooses the inspection team, coordinates the entire process, moderates
the group meeting, and ensures that all steps are taken correctly.

• the Inspectors to do the work of defect finding. Their work is performed first
privately to do preparation and then as part of the group to identify and
classify the defects. The Moderator also acts as an Inspector.

• a Reader to read (or paraphrase) every line/section to all participants during
the inspection so that the entire work product is covered.

• a Recorder to classify and record defects. All records of the inspection are
made by the Recorder.

• a Producer of the work product. The Producer is present to supply
additional information about the work product. A second but less important
function is to collect non-defect comments gathered during the inspection
that would be useful for future revisions to the work product.

Scrutiny does not implement all these roles explicitly. The Inspector and
Moderator roles are kept intact. The Producer is not distinguished from other
Inspectors. The Moderator performs the Reader role by highlighting the current
focus of attention in the work product on each user’s screen. The Recorder role is
performed by the Moderator in collaboration with the Inspectors and the
application itself.

3.2 Inspection Stages in Scrutiny

The inspection has four sequential stages: Initiation, Preparation, Resolution,
and Completion.

• Initiation for the Moderator to set up the inspection by obtaining the work
product(s) to be inspected, identify and invite the participants, and do all of
the up-front work needed to ensure a successful inspection.

• Preparation for the Inspectors to examine the work product and prepare
comments and questions (which we call annotations). In this stage each of
the Inspectors work independently.

2 IBIS is an acronym for Issue Based Information System, a structured method for
discourse on issues; it is considered a classical CSCW application.

April 20, 1993 Page 5 RAD/USARL/93010

• Resolution for the formal defect processing. The Moderator paces the
meeting by stepping through the work product. All Inspectors contribute
collectively by reading the results of others’ preparation and then creating
more annotations (defects, questions, actions for the future, ...). The Recorder
classifies the defects based upon the annotations.

• Completion for the results of the Inspection to be processed and prepared
for transmission to other stages of the software development process. For
example, at a later time, the Producer would remove the defects by making a
revision of the work product (perhaps requiring a reinspection). This stage is
performed by the Moderator and Recorder.

3.3 Artifacts created by Scrutiny

Items entered by Inspectors are called annotations and are initially labeled as a
question, potential defect, remark, or reply. They later may be modified, made
obsolete or relabeled. Each defect is further classified; they are treated as a
separate class of artifacts because of their importance to the process. There is a
polling procedure invoked by the Moderator to obtain consensus; the results are
preserved as artifacts. At the end of the inspection a variety of reports may be
prepared to document the results and actions taken during the inspection. The
defects are also formatted in a manner suitable for insertion into defect managing
systems.

Figure 2 describes the attributes of the stages of Scrutiny to show the relationship
among the artifacts, roles and stages.

INITIATION PREPARATION RESOLUTION COMPLETION

PARTICIPANTS • Moderator
• Producer

• Inspectors
• Moderator
• Inspectors
• Producer
• Recorder

• Moderator
• Recorder

SYNCHRONY
• asynchronous • synchronous

ACTIONS
• get work

product
• select

participants
• schedule

meeting

• study materials
• find related info
• make

annotations

• refine
annotations

• identify
defects

• classify defects
• resolve issues

• finish defect
classification

• prepare
reports

• close meeting

ARTIFACTS
CREATED

• annotations • annotations
• defects
• polls

• defect list
• reports
• statistics

Fig. 2. Scrutiny Stages and their Attributes

3.4 Scrutiny User Interface

The Scrutiny user interface attempts to balance two different points of view on
collaborative inspection and review: the process and role points of view. The user
interface may be affected by either of these points of view. The effect is realized
by enabling or disabling menu selections and/or buttons in the appropriate
windows.

April 20, 1993 Page 6 RAD/USARL/93010

The annotation pane
contains a list of annotations
on the work product that
have been made so far. This
list can be sorted in a
number of ways. The defect
pane contains a list of defect
reports that have been
classified. Finally, the poll
pane lists the polls that have
been taken during this
inspection and their results.
Selecting an annotation,
defect, or poll will open a
window for the object
showing it in more detail.
The annotation, defect, and
poll panes are shared,
synchronous panes. As a
new object of the given type
is created, a new entry
appears in the appropriate

The process orientation affects the user interface depending on the current state
of the inspection/review process. The process, described with Petri nets (see
Section 3.5), defines the states a role can reach at a given point in the inspection.
This results in a somewhat modal interface, but the modality is necessary to
accurately reflect the inspection model we have chosen. For example, an Inspector
cannot create a new annotation when a poll is in process because the defined
process does not allow it.

The role orientation affects the user interface depending on the role of the
individual user. For example, an Inspector can neither convene the meeting (i.e.,
move it from Preparation stage to Resolution stage) nor change the current focus
of the work product; these actions are restricted to Moderator and Reader roles.

Two types of information can be displayed in the windows: private and shared.
Private information is seen only by the user who created it. Shared information
can be accessed by any participant in the inspection/review. The shared
information can be presented in a synchronous or asynchronous manner.
Synchronous, shared information is managed such that all changes are
immediately reflected in each user’s view. Asynchronous, shared information is
managed by presenting the information when requested by the user. For instance,
the annotations list in the middle of Figure 3 is updated (during Resolution stage)
with a new entry whenever any user creates a new annotation; thus, it is
asynchronous, shared information. The text of the annotation is shared,
synchronous information, however, since it is only presented to the user when
he/she acts to display the full annotation.

The Scrutiny Control Window (Figure 3) acts as a control panel for the
application. Each participant sees a copy of this window. The Participant Status
information at the top is a shared, synchronous pane; each user sees exactly what
the other users see. As a user acts, his or her status is updated. For instance,
Figure 3 shows user 'gintell' is annotating. The buttons are activated or
deactivated depending on their applicability to the particular role and state of the
inspection.

Fig. 3. Scrutiny Control Window

April 20, 1993 Page 7 RAD/USARL/93010

pane. However, accessing the new object is asynchronous since the object itself is
only displayed when the user requests it. This allows the users to look at
annotations in any order (just as they can leaf through the work product in a face-
to-face inspection).

The Scrutiny Work Product
Window (Figure 4) presents
a shared view of the Work
Product being inspected. The
top pane shows the
pathname of the work
product and the line(s) of the
current focus in the
document. The primary pane
displays the work product
itself. The bold and
underlined region is the
current focus. Each user can
s c r o l l t h i s p a n e
independently though they
are not allowed to modify it.
Beneath this, there are two
rows of buttons. The
navigation buttons (Previous
Line, Next Line, Go To Line,
and Create Zone) and the
Take Poll button are active
for the Moderator only. The
Annotate button is used to
create an annotation about
the current focus.

The Scrutiny Annotation
Window (Figure 5) is used to
create or display the details
of an annotation. The top
panes include information
about the annotation such as
the focus on which this
annotation was made,
author, and title. The middle
pane is a buffer in which the
body of the annotation is
typed or displayed. At the
bottom, there are radio
buttons which categorize the
annotation and another set
of buttons for frequently
used actions on the
annotation.

Fig. 4. Scrutiny Work Product Window

Fig. 5. Scrutiny Annotation Window

3.5 Model of the Resolution stage

The Resolution stage of Scrutiny models face-to-face inspections as closely as
possible. Thus the participants are engaged in synchronized collaboration to
adhere to the requirements of the inspection process. It is this property of

April 20, 1993 Page 8 RAD/USARL/93010

inspection that distinguishes Scrutiny from many of the other cooperative
applications where the cooperation is controlled by the users and not the
application.

ready
to poll

polled

inspector
annotating

start inspection

suspend

presentcancel

absent

present

take poll

next region
annotate

send
annotation

interrupt

finish

end poll

moderator in
progress

inspector in
progress

poll

idle

generate
report

resume

suspended

show
presence

exit exit
establish
quorum

present

finishfinished

finished

inspector
not present

Fig. 6. High level Petri net Diagram for Scrutiny Resolution Stage

This high level Petri net (Figure 6) describes a simplified version of the behavior
of the Resolution/Completion stages of Scrutiny. Each place (circle) represents a
possible state for a Moderator or an Inspector. Each transition (box) represents a
possible action. The intent is to provide an idea of the level of interaction between
the two roles during these stages, not to describe a precise design of this stage3.

As an example, consider the poll sub-process. The take poll transition (highlighted
in Figure 6) is enabled when no Inspector is annotating and the Moderator is in
progress. Then, every Inspector (in the state in progress or not present) and the
Moderator all move into the state ready to poll. Each respondent may vote or not;
however, once having voted the vote may not be changed. The Moderator
decides when to enable the transition end poll. Whether they responded to the poll
or not, each participant then returns to the place occupied prior to the taking of
the poll.

Note also the interrupt transition, which was not implemented in the early
versions of Scrutiny. This transition was added to permit the Moderator to force
Inspectors out of inspector annotating and into inspector in progress. Otherwise, the
Moderator was unable to move to the next region, take poll or even suspend meeting
if an Inspector should walk away from his or her workstation while in inspector
annotating.

3 The full design requires labeling edges and transitions, giving an interpretation of the
entire diagram, and to complete the set of individual actions allowed (most of which do
not change the global state of Scrutiny).

April 20, 1993 Page 9 RAD/USARL/93010

4 Current Status and Lessons Learned

At the time of submission of this paper, Scrutiny is used by the Scrutiny team and
another project’s team to use it to perform inspections and find and classify
defects4. This paper, some code and a number of other documents have been
inspected with Scrutiny. We have been performing demos and working with
several other groups within Bull for informal training and evaluation. Scrutiny
(named CIA at the time) was demonstrated at the ACM 1992 Conference on
Computer-Supported Cooperative Work in Toronto, Canada (November 1992)
and at the ACM SIGSOFT 1992 Fifth Symposium on Software Development
Environments in McLean, Virginia (December 1992).

We are increasing the volume of experimentation with volunteers from other
development groups and will learn more during the next few months. We have
already made a number of improvements suggested by these initial users and
have a number of ideas for developing a much improved system. The remainder
of this section summarizes what we have learned and done.

4.1 Effectiveness of Computer-Supported Inspection

Inspections done with Scrutiny are at least as effective as those performed via
face-to-face meetings; they appear to take about the same amount of time and
identify defects as effectively as face-to-face inspections. We found that
inspection-trained users could start using Scrutiny effectively with less than 2
hours of training, and in several cases they were able to learn “on-the-fly”.

Some significant advantages over the face-to-face process have been
demonstrated. Because the defects are collected in machine-readable form for
subsequent processing by other tools, clerical and administrative work that is
performed after an inspection is eliminated. This was one of the first features we
added in response to user requests. Because all of the non-defect comments are
captured, the Producer doesn’t have to waste valuable inspection time recording
them or collecting Inspectors’ marked up papers or listings. Similarly, the
Recorder doesn’t have to pause the inspection while doing bookkeeping or
manual transcription during the inspection meeting. We have some evidence that
Inspectors do a more comprehensive job of preparing because the results of
preparation will be seen by others; this might result in more defects being found.

4.2 Stages and Roles

The initial version of Scrutiny did not have the Preparation stage integrated in
the tool. Based upon initial experience, this was the highest priority improvement
to make to Scrutiny and it is now operational. This allows Inspectors to work
independently while doing preparation with the tool and then enables reuse of
annotations made during the Preparation stage during the Resolution stage; this
reuse enables a noticeable speedup of the Resolution stage.

Our original assumption was that the computer assistance was sufficiently
powerful that the Recorder role could be handled by the Moderator. We have
discovered that the Recorder role must be explicitly implemented - the inspection
is slowed down if the Moderator must always do all of the Recorder’s work as
well as controlling the meeting and inspecting.

4 The most exciting times have been while using an imperfect version of Scrutiny to
inspect design documents about Scrutiny itself since the annotations and comments are all
self-referential in real-time.

April 20, 1993 Page 10 RAD/USARL/93010

4.3 Performance

One of our initial assumptions about performance was that the Message Bus
would be a potential bottleneck. We obtained considerable data about the
performance of the underlying mechanisms (e.g., the Message Bus and the
Conversation Engine) while using Scrutiny [21]. The preliminary data showed
that the bottleneck was in the Conversation Engine. As a result of this data the CB
team redesigned the underlying mechanisms and with some rework on our part
we obtained a 3-5 times improvement. We also did some experimentation with
CB components distributed over a WAN and found that if the network was at
least 50KB/sec Scrutiny performance was essentially the same as our day-to-day
use on a LAN. There is considerably more work to do in collecting and analyzing
data, but these first experiments done at this early stage of the project have been
valuable to us.

4.4 User Interface

As a result of the experimental usage we have made a number of modifications to
the number and format of windows to simplify the user interface. We replaced
some pull-down menus with buttons for frequently used requests. For example,
we added a respond button to the annotation window since responding was a
frequent use for annotations. We modified Scrutiny to indicate what portions of
the work product were already inspected. We added support for the use of the
CB graph browser facility to give users an additional means for looking at
annotations.

The experience strongly supported our expectations about the influence the user
interface will have on the overall usability and acceptance of Scrutiny; a few
minor changes have already made a big difference; however, substantial
improvement remains to be made.

4.5 ASCII-only Work Products

Work products processed by Scrutiny are restricted to ASCII files only.
Documents that are produced by most word processors can have text-only
versions created, but diagrams, charts and formatting can not be inspected.
Scrutiny has been used to inspect documents where the diagrams (if present)
were inspected manually. In the future we will address this through integration
with other tools that can process complex documents.

Inspection is usually performed by moving the focus on the work product from
beginning to end in sequential order. How to handle complicated diagrams or
charts is a problem that requires further study.

For code inspection, ASCII text format is usually sufficient. A different issue
arises when the structure of the code itself suggests other possible orderings for
the inspection. Integration with code analysis tools will allow “structured”
inspections to be performed; this should prove to be an additional advantage of
computer-assisted inspections over face-to-face inspections.

4.6 Audio Channel

Face-to-face meetings have the advantage of high bandwidth communication
using voice, gestures, and informal and spontaneous hand-written notes or
drawings. Such communication has the disadvantage of usually not being
preserved. Scrutiny was designed so that it can work with no audio facilities. We
took this approach so that the absence of audio support would not preclude use
of Scrutiny. In general, such facilities are not readily available particularly

April 20, 1993 Page 11 RAD/USARL/93010

between geographically separated locations. Usage thus far shows that effective
inspections can be done without audio.

We have done some experimentation using Scrutiny in the same room with
people talking, with teleconference, and with audio facilities built into the work
stations to see the effect on the inspection. Synchronization and quick
question/answering is much easier with audio and speeds up the Resolution
stage. As a result of this experimentation we are adding some more easy-to-
invoke discussion facilities than that offered by the creation of annotations to reap
some of these advantages of audio. Handling mixed capabilities is an open
research issue.

5 Generalizing the process

The work to evolve Scrutiny for activities similar to inspection such as reviews
and requirements collection is well under way. In essence, this changes the rules
concerned with operations performed by the various roles and during the several
stages to make Scrutiny’s behavior less constrained than required for inspection.

In inspection, the Preparation stage has each Inspector working independently
whereas the Resolution stage has all work synchronized by the Moderator. For
review, neither independent preparation activity nor synchronized resolution
activity is required by the process. Uncontrolled shared preparation can be useful
for people to work in an interactive fashion while elaborating on their
incompletely formed initial thoughts. On the other hand, moderated inspection-
like work is useful to assist in reaching closure on issues. To address this in
Scrutiny, we will divide the Preparation stage into two sections where the first is
for private work and the second is for collaborative shared preparation. The
Resolution stage remains the same although with effective shared preparation it
may be very short. Classified defects are not produced during review and thus
the artifacts produced by the Resolution stage are different.

SHARED PREPARATION

RESOLUTION

PRIVATE PREPARATION

RESOLUTION

MODIFIED PROCESS

PRIVATE PREPARATION

INSPECTION PROCESS

Fig. 7. Modified process

Figure 7 shows a comparison between the inspection process and the process
modified for review. The thin lines represent private preparation activities by
participants, thick lines represent collaborative preparation, and the very thick
lines represent synchronized resolution activities. Large circles represent stage

April 20, 1993 Page 12 RAD/USARL/93010

changes and small circles represent the joining of participants for shared
preparation. In this process instantiation, each participant switches from private
to shared participation at his or her own selected time. As each participant joins
this shared participation he or she sees the previously joined participants’
annotations and vice-versa. This permits collaboration to begin for some people
while others continue private participation, joining later. Scrutiny will permit a
variety of policies as to when and how this switching occurs for different review
models. This flexibility will also enable experimentation with changes to the
Inspection process.

6 Future Work for Integration with Tools and Environments

Inspection and review should be more than isolated processes acting on a fixed
set of work products that are “input” to the activity. Scrutiny needs to be
integrated with other tools. Some examples include a static analyzer to use in
code inspections, the tool used to deposit data in a metrics database, and a
document processor for non-ASCII text so compound documents can be managed
and displayed by the producing software instead of having to be translated to
another form for processing by Scrutiny.

There are a number of significant enhancements that we can make by using data
integration, control integration, process integration, and distributed processing
services to integrate CB/Scrutiny with other tools, services, and information. In
the remainder of this section we briefly describe this aspect of our research.
Much of this work is exploratory with unresolved issues that will take
considerable time to resolve.

6.1 Data Integration for Tool Access

The introduction of an external OMS (object management system) presents a
challenge because CB has its own interim persistent object store. Our initial work
with data integration uses the GIE Emeraude implementation [7] of the Portable
Common Tools Environment (PCTE) [5]. In an environment where all of the
software engineering work products are maintained by an OMS, Scrutiny access
to this OMS will enable two significant enhancements to Scrutiny:

• During an inspection, identified defects are associated with regions of the
work product. After the inspection, the removal of these defects is managed
as part of the standard software engineering process; but not all may be
removed at the same time. Traditionally, the defects are managed in a
separate defect tracking system. With the use of an OMS that includes
versioning of objects, the defect reports can be explicitly associated with the
objects themselves.

• Scrutiny should be able to easily find and display up-to-date versions when
needed. While inspecting a pre-defined set of work products, it is often
desired to examine a related set of work products whose need was not
necessarily known at the start of the inspection (e.g., previous versions when
inspecting code, or documents in the reference list of a design document).

6.2 Control Integration for Tool Access

The Message Bus of ConversationBuilder is Scrutiny’s control integration
mechanism. It allows tools to send commands and notifications to the other tools
that are connected to the Message Bus. It is influenced by FIELD as shown in its
multicast mechanism that connects tools through the bus rather than directly to
each other. Unlike many other FIELD-inspired messaging systems, the Message

April 20, 1993 Page 13 RAD/USARL/93010

Bus is a multi-user system; this enables messages sent due to one user’s actions to
be “seen” by other Scrutiny users. We see further use of this aspect of the
Message Bus to control each user’s interaction with non-Scrutiny tools as well as
for the control actions of the Scrutiny protocols. FIELD-like systems have also
demonstrated considerable value for the loose integration of existing UNIX tools
[1]. Thus the Message Bus is well suited as the basis for interapplication
communication between Scrutiny applications and encapsulation of existing tools
such as the static analyzer mentioned earlier.

6.3 Process Integration

We are investigating various process modeling and work flow tools. One such
tool is the Marvel system, a rule-based software engineering environment
developed at Columbia University [11]. Within this system it is possible to encode
the rules that describe the Software Development Process and use these rules to
control the execution of the tools that perform the process steps. We are
investigating integration of Marvel and CB and are experimenting with Scrutiny
in this merged environment.

6.4 Distribution and Connection

We want to use Scrutiny for inspections and reviews where not all of the
participants are at the same site and in fact may be separated by many network
hops and time zones (Figure 8). To support this, we have been studying
Scrutiny/CB/Message Bus communication to understand the traffic pattern,
simulate various modes of operation, and prepare for revised distribution
architectures.

Another issue in this domain is that Scrutiny and CB itself currently assume that
all participants must be connected to use the system. CB is sufficiently robust that
an unconnected user doesn’t prevent the others from continuing and he or she
can later reconnect and catch up. The advent of notebook computers and other
detachable systems yields the possibility of some work being done on a non-
networked system. In fully connected Scrutiny, even though the individual users
are not aware of each other's preparation, the system is. The challenge here is to
correctly synchronize this independent work with that done by the other
participants at a later time.

Users @ site A

Users @ site B

Users @ site C

Detached User
Graph

Browser

Widget

Server

File

Clerk

Text

Server

...

File

Clerk

Conversation Engine

ScrutinyIBIS ...

Graph

Browser

Widget

Server

File

Clerk

Text

Server

Graph

Browser

Widget

Server

File

Clerk

Text

Server

...

File

Clerk

Conversation Engine

ScrutinyIBIS ...

Graph

Browser

Widget

Server

File

Clerk

Text

Server

Graph

Browser

Widget

Server

File

Clerk

Text

Server

...

File

Clerk

Conversation Engine

ScrutinyIBIS ...

Graph

Browser

Widget

Server

File

Clerk

Text

Server

Graph

Browser

Widget

Server

File

Clerk

Text

Server

File

Clerk

Conversation Engine

ScrutinyIBIS ...

Fig. 8. Scrutiny Distributed and Detached

April 20, 1993 Page 14 RAD/USARL/93010

7 Related Work on Inspection

This section describes some key points we have observed by study of other
people’s work. We have loosely classified them into ideas that improve
comprehensiveness, ideas that decrease the time and effort, and ideas that are
related to process change.

7.1 Inspection Comprehensiveness

One of the problems associated with inspections is that it is difficult to even find
most of the defects. Various techniques are used with the most common
technique involving building checklists and having all inspectors use these
checklists. InspeQ by Knight/Myers [13] has the capability of displaying
checklists and corresponding standards with cross referencing and examples in
specific displays and to guide the Inspectors in their work. This illustrates
another advantage of computer assisted inspection by making this form of
information readily available to the inspectors and also ensuring that up-to-date
information is available.

Martin/Tsai [14] discuss a technique where multiple teams inspect the same
requirements document to maximize the likelihood of finding defects. Then a
common moderator collates the results to produce a single defects list. They have
applied this to mission-critical software, with excellent results. Of course, one
can't afford to inspect every item more than once. Applying this technique to the
requirements phase is exactly the right place since undetected and thus remaining
defects in requirements documents have the most expensive consequences. This
technique lends itself to computer assisted inspection in managing and
coordinating these inspections, particularly if they are geographically distributed
where traditional means of coordination would be slow. This is an example of
where a change to improve inspection comprehensiveness introduces a major
change to the model of inspection which has significant implications to the design
of the system.

As described earlier, there is a desire to give inspectors/reviewers access to
related materials that were not identified at the start of the inspection. CSRS by
Johnson/Tjahjono [10] implemented a scheme for managing and viewing other
related artifacts during the inspection and have obtained good results during
reviews.

7.2 Time and effort needed to perform Inspections

Inspecting large work products cannot be done in a single session because people
cease to be effective after inspecting for a period of time. The traditional way to
solve this problem is to do the first 200 lines in the first session, the second 200
lines in the second, etc. InspeQ (Knight/Myers) describes a Phased Inspection
where the division is logical instead of physical and each division is called a
Phase. Inspectors are assigned specific topics to cover with some phases being
assigned to one person only (e.g. looking for spelling errors) while other phases
are done collaboratively. InspeQ itself assists the Moderator in managing the
process. It can easily be seen that this allows more parallelism and can consume
less total effort than the traditional division. (Imagine going to the seventh 2-
hour meeting and trying to remember the context that was set in the first meeting
2 weeks ago.) This is a good example of a major change in the inspection model
that is more manageable with an automated tool.

Russell [19] describes results, costs, and cost savings in a very large
Bell/Northern Research project performed in 1988. He shows how large the

April 20, 1993 Page 15 RAD/USARL/93010

inspection effort is and provides additional motivation for computer assistance to
manage it and make inspection more efficient.

7.3 Other Changes to the Inspection Process

Johnson/Tjahjono, in describing CSRS, state that a system allows one to collect
considerable empirical data about the inspection process and use that data to test
various assumptions for validity. For example, they point out that the
effectiveness of the use of checklists can be questioned. Inspection results with
and without checklist usage can be compared in a rigorous fashion more readily
using a system like CSRS than by ad-hoc or anecdotal methods.

Icicle [2] is an inspection system built at Bellcore to support users who are in the
same room. Like Scrutiny, it was done to explore a number of research issues,
gain payoff from use, extend it to distributed inspections and reviews, and to try
integration into other frameworks. The authors felt that such work would enable
process changes to produce higher quality software more cost effectively. Similar
issues are presented in [4].

In a separate experiment in our lab [15], a prototype inspection tool modeled after
Scrutiny was built in EAST [20], an environment based upon PCTE. In this tool,
the work product being inspected is stored in the PCTE Object Management
System. When defects are found, they are stored as hyper-links in versions of the
work product. This allows the defects to be carried along with the object itself.
We will apply the results of this work to Scrutiny.

8 Conclusion

This paper presents an overview of the Scrutiny system, the architecture and
description of its main features, and to some extent a view on its future evolution.
This presentation should be understood as an example of the benefit that
Software Engineering tools can draw from CSCW technology. We deliberately
chose to focus on inspection in the software life-cycle both because this process is
particularly collaborative and because, to our knowledge, no “off-the-shelf”
efficient tools for inspection exist today.

The first experiences have been very encouraging and enriching. In spite of some
shortcomings in the current implementation, some individuals prefer inspecting
with Scrutiny, citing the advantages of having the results in electronic form.
While enhancing Scrutiny, we will continue experimentation by product
development teams. Developing iteratively and working with users will guide us
in the next improvements. After new experimentation with Scrutiny we expect to
be able to share more results in the near future.

The goals of this project include both building an inspection tool and testing the
integration technologies. Our relationship with the ConversationBuilder
development team lets our experience influence CB evolution and lets us rapidly
take advantage of the subsequent improvements.

Finally, we would like to stress the importance of integration with audio, video,
and other multimedia facilities. Widespread use of such technology is currently
precluded by cost and availability. However, we have no doubt that the appeal of
multimedia is extremely strong.

April 20, 1993 Page 16 RAD/USARL/93010

9 Acknowledgments

This paper could not have been written without the work of many people who
have worked with us on the design or have been experimental users. Simon
Kaplan's ConversationBuilder team and in particular, Doug Bogia and Bill Tolone
have been invaluable.

10 References

1. John E. Arnold and Gérard Memmi. Control Integration and its Role in
Software Integration. In: Toulouse '92 Fifth International Conference:
Software Engineering & its Applications, Proceedings (December 1992)

2. L. Brothers, V. Sembugamoorthy, and M. Muller. ICICLE: Groupware for
Code Inspection. In: Proceedings of CSCW '90, ACM Press (October 1990)

3. J. Conklin and M. Begeman. gIBIS: A hypertext tool for exploratory policy
discussion. In: Proceedings of CSCW '88 (1988)

4. Janet Drake, Vahid Mashaykhi, John Riedl, and Wei-Tek Tsai. Support for
Collaborative Software Inspection in a Distributed Environment: Design,
Implementation, and Pilot Study. University of Minnesota Technical Report,
TR 92-33 (June 1992)

5. ECMA. Portable Common Tool Environment (PCTE) Abstract Specification.
ECMA-149 (December 1990)

6. Michael E. Fagan. Design and Code Inspections to Reduce Errors in Program
Development. In: IBM Systems Journal, Vol. 15 - No 3 (1976)

7. The Emeraude Environment, Reference Manual Set, GIE Emeraude (July
1990)

8. W.S. Humphrey. Managing the Software Process. Addison-Wesley, Reading,
MA, (1989)

9. Quality Systems - Model for Quality assurance in design/development,
production, installation and servicing: ISO 9001. International Organization
for Standardization (1987)

10. Philip Johnson and Danu Tjahjono. Improving Software Quality through
Computer Supported Collaborative Review. University of Hawaii, ICS-TR 92-
04 (1992)

11. Gail E. Kaiser, Peter H. Feiler, and Steven S. Popovich. Intelligent assistance
for software development and maintenance. In: IEEE Software, 5(3) - 40-49
(May 1988)

12. Simon M. Kaplan, William J. Tolone, Douglas P. Bogia, and Celsina Bignoli.
Flexible, active support for collaborative work with ConversationBuilder. In:
Proceedings of CSCW '92, ACM Press (November 1992)

13. John C. Knight and E. Ann Myers. Phased Inspections and their
Implementation. In: ACM - Software Engineering Notes, Vol. 16 - No 3, ACM
Press (July 1991)

April 20, 1993 Page 17 RAD/USARL/93010

14. Johnny Martin and W.T. Tsai. N-Fold Inspections: A Requirements Analysis
Technique. In: Communications of the ACM, Vol. 33 - Number 2, (February
1990)

15. Reza Morakabati. PCTE-based Inspection Tool - Design and Implementation.
Bull USARL Research Report, RAD/USARL/93018 (1993)

16. Susanna Opper, Henry Fersko-Weiss. Technology for Teams. Van Nostrand
Reinhold (1992)

17. Mark C. Paulk, et.al. Capability Maturity Model for Software. CMU/SEI-91-
TR-24, Software Engineering Institute (August 1991)

18. Steve Reiss. Interacting with the FIELD Environment. Brown University
Department of Computer Science, Technical Report No CS-89-51 (May 1989)

19. Glen W. Russell. Experience with Inspection in Ultralarge-Scale
Developments. In: IEEE Software (January 1991)

20. EAST Environment, Manual set. SFGL (1992)

21. Li-Tao Shen, Pascal Petit, and Patrick Denimal. Performance Evaluation of the
Message Bus of ConversationBuilder through the Scrutiny application. Bull
USARL Research Report. RAD/USARL/93019 (1993)

22. Edward F. Weller. Lessons Learned from Two Years of Inspection Data. In:
Proceedings of The 3rd Annual Applications of Software Management
Conference (November 1992)

23. Terry Winograd and Fernando Flores. Understanding Computers and
Cognition. Addison-Wesley (1987)

